
Fallacy of global variables, and how to avoid them Abhijith CV

 Senior Engineer, DTRI

Page 1 of 5

DTRI_LCO_013_June 2023_Rev**

Fallacy of global variables, and how to avoid them

If you are still new to programming, the journey from college grad to employed software developer is

a fascinating one full of learnings. With this transition, you learn new design patterns and methods

while discarding old, outdated or even wrong practices learnt in college.

One of the first problems you will notice as you code is the danger of using global variables. The more

of those that you use, the tougher it is to manage them and more bugs that will inadvertently creep

in.

This is due to many reasons-

 Occurrence of naming conflicts, when two or more variables intended to be separate share

the same name.

 Global variables are anti information-hiding, aka encapsulation. Encapsulation is a good

practice, particularly when writing libraries.

 It is tough to determine (even with testing) the flow of the program, as multiple files and

functions can change the state of your variable. Unintended side effects can be particularly

devastating for your code as they can be tough to detect or may appear only under edge

cases.

 Global variables hog memory.

Ways to avoid them

1. Getters and setters.

Although C is not an object-oriented language, there are many ways to achieve encapsulation, one of

which is getters and setters. Getters are functions that provide access to retrieve the value of a

private variable, while setters are functions used to modify the value of a private variable. By

encapsulating the state of a variable within a structure or module, getters and setters allow

controlled access and manipulation without directly accessing the variable.

How exactly would you achieve private variables and getters/setters? Here is an example:

Fallacy of global variables, and how to avoid them Abhijith CV

 Senior Engineer, DTRI

Page 2 of 5

DTRI_LCO_013_June 2023_Rev**

main.c

#include "myfile.h"

int main ()

{

set_pi(3.1416);

float pivalue= get_pi();

printf("%f", pivalue());

 return 0;

}

Fallacy of global variables, and how to avoid them Abhijith CV

 Senior Engineer, DTRI

Page 3 of 5

DTRI_LCO_013_June 2023_Rev**

Voila, now you cannot access or modify the variable pi from any external file as you have restricted

the data variable pi to file-scope. Only your getter and setter functions have access and you need not

keep track of any global variables.

 myfile.c

static float pi; // works as private variable

void set_pi (float num)

{

pi = num;

}

float get_pi (void)

{

return pi;

}

Fallacy of global variables, and how to avoid them Abhijith CV

 Senior Engineer, DTRI

Page 4 of 5

DTRI_LCO_013_June 2023_Rev**

// file.h

typedef struct opaquedata *op;

 op create_op(int value, const char* string);

//main.c

op op1 = create_op(100, "DTRI");

2. Opaque structures.

Opaque structures are abstract data types, which are yet another effective way to avoid global

variables. An opaque structure hides the implementation details of a data structure, preventing

direct access to its members. Instead, the structure is only accessed through functions defined within

the same module or library.

file.c

struct opaquedata {

int val;

char string[10];

};

op create_op(int value, const char* string)

{

op new_op = malloc(sizeof(struct opaquedata));

new_op->val = value;

strncpy(new_op->string, string, 9);

new_op->string[9] = '\0';

return new_op;

}

Fallacy of global variables, and how to avoid them Abhijith CV

 Senior Engineer, DTRI

Page 5 of 5

DTRI_LCO_013_June 2023_Rev**

3. Passing local variables around.

Passing local variables as parameters to functions and using return values is another simple and great

way to avoid global variables in C. By limiting their scope and passing them explicitly, we reduce the

reliance on global states that can be altered anywhere and anyhow. If needed, use static for a local

variable to hold its value throughout the entirety of the program.

